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Quantum Arnol'd diffusion in a simple nonlinear system
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We study the fingerprint of the Arnol’d diffusion in a quantum system of two coupled nonlinear oscillators
with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of
a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that
global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the
classical data. However, the quantum diffusion happens to be slower than the classical one. Another result is
the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show
that this effect has the same nature as for the studied earlier dynamical localization in the presence of global
chaos. The quantum Arnol'd diffusion represents a new type of quantum dynamics and can be observed, for
example, in two-dimensional semiconductor structcgggntum billiards perturbed by time-periodic external
fields.
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[. INTRODUCTION effect of quantization of the Arnol’d diffusion in a system of
two pairs of weakly coupled oscillators has been investi-
As is well known, dynamical chaos in Hamiltonian sys- gated.
tems is related to the destruction of separatrices of nonlinear For the first time, the Arnol'd diffusion was observed in
resonances. For a strong interaction between the resonancése numerical study of a four-dimensional nonlinear riip
the latter can overlap in the phase space, thus leading to Bhe more physical model of two coupled nonlinear oscilla-
global chaosfor which chaotic region is spanned over the tors with time-dependent perturbation was considered, both
whole phase space of a system, although large isolated isnalytically and numerically, in Ref$10,11] (see also re-
lands of stability may persist. For a weak interaction, chaotiocview [5] and the book§1]). Numerical experiments with this
motion occurs only in the vicinity of separatrices of the reso-model have confirmed analytical estimates obtained for the
nances, in accordance with the Kolmogorov-Arnol'd-Moserdiffusion coefficient in dependence on model paramefers
(KAM) theory (see, for example, Ref1]). recent studies on this subject see Réf]). Note that the
In the case of two degrees of freedomM=2), the pas- direct numerical study of the Arnol'd diffusion is quite dif-
sage of the trajectory from one stochastic region in phasécult since its rate is exponentially small, and it occurs only
space to another is blocked by KAM surfaces. The situatiorfor initial conditions inside very narrow stochastic layers.
changes drastically in many-dimensional systerNs>-@), One should distinguish the stochastic web for the Arnol'd
where the KAM surfaces no longer separate one stochastiiffusion from that found for systems that are linear in the
region from another, anchaotic layersof destroyed separa- absence of a perturbation, see, for example, R&j. In the
trices form astochastic welthat can cover the whole phase latter case the stochastic web arises arousitigienonlinear
space. Thus, if trajectory starts inside the stochastic web, tesonance that has infinite number of cells in the phase space
can diffuse throughout the phase space. This weak diffusiofsee Ref[14] and references thergin
along stochastic webs was predicted by Arnol'd in 1984 So far, the studies of the Arnol'd diffusion have been
and since that time it is known as a very peculiar phenomrestricted by the classicé&br semiclassicalapproaches. On
enon, universal for nonlinear Hamiltonian systems withthe other hand, it is important to understand the influence of
N>2. quantum effects. The problem is not trivial since strong
There are many physical systems whose behaviors appequantum effects can completely suppress weak diffusion
to be strongly affected by the Arnol'd diffusion. As ex- along narrow stochastic layers, even in a deep semiclassical
amples, one should mention three-body gravitational system®gion[15]. The purpose of this work is to study the finger-
[3] and galactic dynamicB4]. It is argued that the Arnol’'d print of the Arnol’d diffusion in a quantum model, by mak-
diffusion may have strong impact on the behavior of ouring use of a direct numerical simulation of some nonlinear
solar system, it is also responsible for a loss of electrons isystem, both in the classical and in the quantum description.
magnetic trapgsee discussion and references in R&f).  Preliminary data are reported in R¢1L6].
From the practical point of view, the Arnol'd diffusion may  The paper is organized as follows. In Sec. I, the basic
be dangerous for long-time stability of motion of chargedmodel is introduced and discussed. We describe briefly the
particles in high energy storage ring. mechanism of the classical Arnol'd diffusion in classical sys-
Recently, the Arnol'd diffusion was explored in the clas- tem and give the expression for the diffusion coefficient.
sical description of Rydberg atoms placed in crossed stati§ection Il is devoted to the study of the quantum model.
electric and magnetic field¥]. The semiclassical approach First, in Sec. Ill A, we study the structure of eigenstates of
has been used for the stochastic pump mo&8Elwhere the the stationary modelwithout an external field Second, in
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Sec. 11 B, we show how to construct the evolution operatorof the x oscillator by the expressior~a(l,)cos®,. Then

that allows us to investigate the dynamics of the systemthe system under consideration is described by the Hamil-

Here we also discuss the global properties of quasienergypnian

states. Next step of our considerati@ec. Il ) is the study

of the evolution of the system for different initial conditions H :A(|3/3+|§/3) —pa(lya(ly)cos®, cosO,

and model parameters. We show that for initial states corre-

sponding to the stochastic layer near the separatrix of the ~a(l)cosOf (1), S

coupling resonance, the motion has a diffusionlike characte(, i,

We calculate the quantum diffusion coefficient and compare

it with the classical one. Quantum effects of the dynamical 37

localization and suppression of the classical diffusion are dis- = —
(4@«1/@)

cussed in Sec. llID. In Sec. IV, we give our conclusions by
Near the coupling resonancew,=w,, the resonance

summarizing the main results, and shortly discuss the pos-
sible systems in which the quantum Arnol'd diffusion may ) . X
be observed. phase®,— 0, and the amplitudes,, a, oscillate. Thus, it
is convenient to introduce slowd(=0,—0,) and fast ¢,

=0,+0,) phases by making use of the canonical transfor-
mation with the generating function

4/3
) and a(l,,)=(4A)Y4 173

Il. CLASSICAL MODEL

In this section, we discuss the main results of the Arnol’d
diffusion obtained in Ref[10] for a classical model. The
Hamiltonian of this model describes two nonlinear oscilla- A
tors coupled by the linear term, and governed by an external
force f(t), =1y L+ 1y

| 1= 2 y | 2= 5 (6)

F=(®X—®y)|1+(®x+®y)l2' (5)

s a result, new actionk; andl, are expressed as follows:

2 4 4
X
H:&+&+—+y——uxy—xf(t)- 1)

2 2 4 4 For the coupling resonance we hake=l,, hencel,<I,,

and the resonance Hamiltoni&hs gets the form
Herep, andp, are momentums in theandy directions, and
w is the coupling constant. The driving term consists of two

B
_ 413
harmonics of the same amplitudg, Hies=2A17 5

5 1 —V(cosf+cosb,)

_ 01+ 0
f(t)=fo(cosQ t+cos,t), ) _foa(lz)co{ 12 2 (cosyt+cosyt), (7

with commensurate frequencie"),;=n{),, so that the pe-
riod is T=2mn/Q = 27m/Q,. with B(1,) =8/9(Al, %) andV(1,) = ua’(15)/2.

Without the coupling £=0) and in the absence of the ~ The average of Eq7) over the fast phasé, gives the
perturbation {,=0), the motion of each oscillator is inte- “Pendulum” Hamiltonian
grable and can be found analytically. The quartic form of the
potentia_ls ha_s been ch(_)sen in_order to hav_e s_imple analyt_ical A =2A|‘2"3+ EI i‘V cosé, ®)
expressions in comparison with more realistic models with 2
additional quadratic terms?/2 andy?/2 in the Hamiltonian.

An interesting feature of the system of quartic oscillatorslt defines the frequency of small oscillations o, and|
is a small contribution of higher harmonics in spite of a
strong nonlinearity. Indeed, the solution fdit) has the form o= JBV= B\/—

(for details see Ref5)), ~0.85, 9)

1/f 2)

X(t) o) 2 i cog(2n—1)wt] and the half-widtPA w of the coupling resonance,
—:C =
- I W\/K(l/\/g) n=1 cosi m(n—1/2)] Ao=B2n
=pV2u. (10

Comparing Egs(7) and (8), one can understand that the
cos 3wt  cos Swt . : .
~0.9550 cosgot + + +... ©)) time-dependent perturbation destroys the separatrix of the
23 23 coupling resonance, and gives rise to a chaotic motion in the
vicinity of the separatrix. Specifically, the actibpreveals a
wherea is the amplitude of oscillations art(1/,/2) stands weak Arnol'd diffusionalong the coupling resonandeside
for the complete elliptic integral of the first kind. One can the stochastic layer.
see that the amplituda,,, of higher harmonics sharply de- Thus, the long-term dynamics we are interested in is con-
creases with an increase af. Therefore, in action-angle trolled by three resonances, one coupling and two driving
variabled , ,0, one can approximately represent the positionones. The first-order driving resonances are determined by
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the conditionw,(l,)=0Q;, Q,, where w,=4A/3(13). In I
fact, the coupling resonance,=w, serves as auiding A
resonancealong which the diffusion takes place.

All three resonances are characterized by their widths,
they can overlap with each other if the coupling consjant
and perturbation strength, are large enough. In order to
observe the Arnol'd diffusion, one needs to avoid such an
overlap since it leads to a strogipbal chaos The condition
for the overlap of the resonances reads

Aw
V2 Arnol’d
where diffusion
2f 1
Ao=p\7 (12) ?

FIG. 1. Three sectionsl {,6;) of the phase space for different
values ofl, are shown for the Hamiltoniat¥) with the force(2)
with u=2X10"*, f,=2x10"8. The Arnol'd diffusion takes place
along thel , direction; see details in the text.

is the half-width of theith driving resonancepQ=|Q;
—Q,|. From Egs(10) and(12), one can obtain for the over-

lap

[2f, 50 Herewg=4mv\%e~ ™2is the half-width of the chaotic layer
?”L \/ﬁzﬁ 13 of the coupling resonance, which mainly depends on the
adiabaticity parametek = §Q/2w, with @ determined by
The Arnol'd diffusion occurs in the case where inequality Eq. (9).
(13) does not satisfy. We performed a numerical study of the classical Arnol'd
In principal, the Arnol'd diffusion arises in our model (diffusion in the system described by the Hamiltonia.
even for one driving resonance. However, in this case, thgpe frequencies of the perturbatié®) were chosen a€);
rate of the diffusion will be strongly dependent on the dis-_ 4 o094 andQ,=0.2513 resulting in the period = 150.
tance between the position of a trajectory inside the StOChaSTherefore, w=(0,+0Q,)/2=0.23035, which determines

tic layer, and the Qriying resonance in the freque.ncy_spa_cqhe amplitudea=~0.2719. Correspondingly, the initial condi-
Instead, for two driving resonances the Arnol’d diffusion is tions were taken for the system to be in between the two

almost homogeneous if one starts in between the two driving, _.
riving resonances.

resonances. This simplifies the analytical treatment of th T t th tem inside the stochastic | f th
diffusion that has been performed in Rgl0]. Leaving aside 0 put Ihe system inside the stochastic layer ot the cou-

technical details, we briefly comment below on the approac!iNd resonance it is necessary to take=* 7. As in Ref.
used in Ref[10]. [10], the ratiof,/u=0.01 was taken small enough to avoid

In order to obtain the diffusion coefficient for a diffusion the overlapping of three first-order resonanisese Eq(13)].

along the coupling resonance, one needs to find the chanddlis also suppresses the influence of second-order reso-
of the total Hamiltonian over the half period of the unper-nances between the unperturbed nonlinear motion and the

turbed motion near the separatrix. Therefore, the diffusioréxternal perturbation.

coefficient can be evaluated as follows: The schematic structure of the coupling resonance is
shown in Fig. 1. Numerical data are obtained for different

(AH) 2 initial conditions corresponding to the separatrix layer and to

= T, (14 the resonance region of the coupling resonance. The chaotic

region inside the resonance is due to second-order reso-
whereT, is the averaged period of motion within the sepa-hances between nonlinear motion of the unperturbed Hamil-
ratrix layer. The change of the Hamiltonian depends on aronian and the two-frequency perturbation. The condition of

initial phase; however, successive values of the phase can lige secondary resonancesis’ = msQ). Herew' is the fre-
treated as random and independent. The variation of the totguency of oscillations at the coupling resonarioear the

energy is then determined by the sum over many periods forresonance center we haug — o= 3x), andn,m are in-

which successive phases can be thalned wgsdparatnx tegers. One can find that the stochastic region inside the reso-
map Analytical estimates obtained in R¢L0], give the fol- nance corresponds to=1 andn=4. As one can see, weak

lowing expression for the diffusion coefficiefin action: diffusion along the coupling resonance can occur both within

af (w2 the separatrix layer and inside the chaotic region formed by
|=—3 _j) (15)  second-order resonances.
Too \ N The diffusion coefficient was computed as follows:
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=0) system, corresponding to the vicinity of the coupling
resonancew,= w, . At the second stage, we will use the

Floguet formalism when considering the time-periodic per-
turbation forf,# 0. Specifically, we construct the evolution

operator in one period of the perturbation, that allows one

to study the dynamics over many periods.

A. Stationary states of the coupling resonance

It is natural to represent the stationary states of the unper-
turbed Hamiltonian,
FIG. 2. Dependence of the diffusion coefficient on initial con-

ditions inside the coupling resonance; see details in the text. I:|s= I:|f()+ I:|3—,uxy, (20
(AH)? in terms of the eigenstates of uncoupled=0) nonlinear
"= ToT (16)  oscillators,
HereH is the value of the total Hamiltoniaf¥), averaged H(X, V)= Cr mtl2(X)BO(Y). (21)
over time intervalsT,, of length 10T with n=2,3. The sec- Y n,m nm¥n() gl

ond average in Eq16) has been done in the following way.
Having the mean valuel in each intervall, for a fixedn, — Hereyn(x), y9(y) are the eigenfunctions &7, HY (which
we computed the differenc&H between adjacent intervals, Will be calculated numerically and the coefficients,, ,, sat-

and averaged the variancA )2 over all differences. This STy the following stationary Schringer equation:
procedure was taken in order to suppress large fluctuations of
the energy, and to reveal a stochastic character of motion.
Specifically, in the case of a true diffusion, one should expect
DZ%Dg.

. _The dependence of diffusion Coeﬁ'g'e’ﬁ’% and D, o with E, andE,, as eigenvalues of the Hamiltoniaﬁéj and
initial phase#, for 1,=0,=0 andl,=w>/(3B%) att=0 is ~0 .

shown in Fig. 2. The region close t§ = — 7 corresponds to Hy, respectively. )

initial conditions inside the separatrix layer, and the interval At the center of the coupling resonaneg, = wp,, we
near §;=— w/2 corresponds to initial conditions inside the haveng=m, and homnO:Er’,D, howmozE,’nD. Near to this
inner stochastic regiofisee Fig. 1 In both these regions resonance it is convenient to expafg and E,, in Tailor
Arnol'd diffusion coefficients have the same order. Approxi- series up to second-order terms. This allows one to introduce
mate equalityD,~ D3 indicates here that the motion is really new indicesp=k+1 andk via the relationsn—ny=k and
diffusionlike [10] On the other hand, strong difference be-m—m0:|_ Then our systenQZZ) can be written in the fol-
tweenD, andDj in the region| 8;| < 7/4 manifests that the lowing form:

dynamics of the system is nondiffusive.

Ecn,m:(En+Em)Cn,m_M 2 Xn,n'Ymm Cnr m’ s (22)

n’,m’

2

n p
1. QUANTUM MODEL Ecyp=|fowp+Ey kz—Pk+7 Ckp
The corresponding quantum model is described by the
Hamiltonian[compare with Eq(1)], —ul - ~+Z Xick'Yp—k,—1-k' Ck',—1
k!

H=H2+H)— uxy—fox(cosQt+cosQyt).  (17)

Here +§ Xik'Yp—k,—k' Ck’,0
2 4 2 4
~q Py X A Py Yy
o_X = -y, 7 + 2, Xk Yo—k1-k Ckr 1t - -+ 23
Hy, >t Hy > T (18 % kk'Yp—ki-k' Ck’1 (23

and standard relations for momentum and coordinate opera-. _ :
tors are assumed, with w=wp . One should note that matrix elemerts, and

Ymn Of the coordinatex andy are equal to zero for transi-

[Py, X]=—itiy, “‘Jy, y]=—ihg, (19)  tions between the states of equal parity. Therefore, the exact
solution of the systeni23) is characterized by two indepen-
with the dimensionless Planck’s constdit. dent sets of odd and even parity eigenstdfes odd and

In order to investigate the evolution of the system, first weevenp, respectively.
have to find stationary eigenstates of the unperturbigd (  Below we consider the case of a small nonlinearity,
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FIG. 3. Energy spectrum of the systé@8) in normalized units
€qs=Eqs/fow for u=10"% #,=1.77321x10°, andny=446.
Three groups with 121 states in each group are shown.

2
ﬁowp>E;;0(k2—kp+ %) (24

This allows us to characterize all states by the group numbe!
g, and by the indes that stands for energy levels inside each
group. In fact,q ands are similar tofastand slow classical
variables characterizing the motion inside the coupling reso-
nance. Therefore, the energy in each group can be written as

Eqs=fowq+ EM whereEM_ is the Mathieu-like spectrum FIG. 4. Probability|c, p|2 for eigenstates at the coupling reso-
q,s— °0 a.,s? a.s GV .
of one group. nance forg=0, u=10"*, and different values oé. (a) The lowest

Numerical data for a fragment of the energy spectrum ardeVel (ground statgfor s=0; (b) near-separatrix level fos=30;
shown in Fig. 3. One can see that the spectrum consists &) (d) above-separatrix levels fa= =+ 35.
series of energy levels, shifted one from another by the value
how. Note that the structure of the energy spectrum in eacl§0 that the external force is periodic with the period
group is typical for a quantum nonlinear resonaft&. T=iT1=|T,, whereT;=27/Q,, T,=27/(Q,, andi, j are
Lowest levels are practically equidistant with the spacingintegers. The initial conditions were taken for the system to
equal tofi,@, wherew is the classical frequency of small P& about halfway between the two driving resonanaes,

phase oscillations at the coupling resonance. Accumulatioﬁ(Q_l’LQZ)/z' — . e .

points correspond to classical separatrices, and all energy Since the Hamiltoniart17) is periodic in time, in accor-
levels inside the separatrices are nondegenerate. The staf¥1c€ With the Floquet theory the solution of the nonstation-
slightly above separatrices are quasidegenerate due to &y Schrainger equation can be written in the following

symmetry of a rotation in opposite directions. form:

Typical structure of eigenstates for differexis shown in et
Fig. 4. Note that ground states in each group correspond to z,//(x,y,t)zexp( — —Q>uQ(x,y,t). (25)
s=0, and next stationary states, reordered according to the fo

energy increase, are labeled by-1,2-2,..., etc. The

eigenstates inside the resonance are symmetrical with respagere Ug(X,Y,t)=Ug(x,y,t+T) is the quasienergy function

to k=0. One can see that the main maximum corresponds t@ith the corresponding quasiener(E) 0. The QE func-
p=0, although there are small additional maximapat  tions and quasienergies are, in fact, the eigenfunctions and
+2,£4,.... Thedegree of delocalization in thespace for  he gigenvalues of the evolution operaftfT) that describes

eigenstates inside the coupling resonance strongly depengs, eyolution of the system within one period of the external
on the energy of eigenstates. Specifically, the closer the e'ib'erturbation

ergy is to that corresponding to the separatrix, the more de-
localized the eigenstate is. Above the separatrix all eigen-
states are characterized by the maximums of the probability
located symmetrically with respect to=0 for statess and

—s; see Figs. &) and 4d).

~ |8QT
U(T)ug(x,y)=ex T The Ug(X,Y). (26)

Since we are interested in wave functions only in discrete

times NT with integerN, we omitted the argumertin Eq.
Now we consider the dynamics of our model in the pres<(26).

ence of the external two-frequency perturbation acting on the In order to construct the evolution operator, we represent

x oscillator. The frequencieQ, and(}, are commensurable, the QE functions as follows:

B. Evolution matrix
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uQ(x,y>:q2$ AL g s(X.Y). 27)

Here the functiong/, <(x,y) are eigenstates of the stationary
HamiltonianH, [see Eq.(20)], and the coefficientAqQ’s are
the eigenvectors of the operator in the representation of S

I:ls. These eigenvectors can be found by a direct diagonal-
ization of the corresponding matrld, ¢.o7 o -

To obtain the matriXJ s.q s We have used the following
procedure. Let the evolution operatdract on an initial state

C;?Q’SO)(0)= 84,q50s,5,- Then the wave functioﬁ:g‘g’s")(T)

at timeT forms the column of the evolution operator matrix, 30 20 -10 0 1'0 20 30

(A0:50) / y _ ~(gg.s0) s
Uq,s;q’,s’(T)Cq/?S/O (O) - Uq,s;qo,so(T) - Cq’g 0 (T)
(29 FIG. 5. Matrix elementgx, s.q-1¢/| that define the transition
probability along the coupling resonaner the same parameters

Repetition of this procedure for different initial states as in Fig. 3. Different values of the matrix elements are shown by
Csfs/'s/)(O)= Sq.q' 95+ allows one to find the whole matrix 9ray scaled symbols. Black squares at the diagonal of the matrix

Uq,s;q’,s’(T)- As a result, the wave functioﬁgqg’SO)(T) can have the values six orders of magnitude higher than those of matrix

. . . . ] elements labeled by gray rhombuses.
be computed numerically by integration of the nonstationary v arey

Schralinger equation in the presence of the tlme—dependeqjatrix states. The important point is that the transition be-

perturbation, tween such states of neighbor grou@dong the coupling
_ resonanckis much stronger than those between other states.
i79Cq,s= (howq+ EL\]|"S)C%S—fO 2 Xg.s:q,s' (€COSQ 4t This phenomenon is analogous to the quantum diffusion in-
q’.s' side a separatrix, which was observed in R&#] for a de-
+c08Q,1)Cyr (29) generate Hamiltonian system.

As a result, a numerical procedure for computing the dy-

mation and construct the evolution matrld, .4 s/(T) by making
use of EQ.(30). Then, direct diagonalization of this matrix
Cqs()=bgs(Dexd —i(qo+Eq Jfigt], (30) vields the eigenvaluesq and the eigenvectordg. Once
_ the eigenvalues and the eigenvectorAg’S are obtained,
one can obtain one gets the evolution operator for one period,

ifighy = —f cos(@t) o AQ* ieqT
0Pqs=~ToCO% 7 Uasars(M=2 AQAG . &F — =] (32

_i M _gM
x> [Xqs:q+150q+ 158 Faras ™ Fadho
SI

By raisingU «.q.¢(T) to the Nth power and using the or-
thogonality condition for the eigenvecto@cﬁs, one can ob-
+qus:q_lvsrbq_lvs,e—i(Egﬂil’s,—Ems)t/ho]’ (31) tain_ the evolution operator that propagates the systemMver
periods of the external perturbation,
where 6Q0=0Q,—Q,. In the resonance approximation we ONT
keep, in Eq(31), only the most important slowly oscillating B * leq
terms withq’=q=+ 1. qus?q“s’(NT)_% AqQﬁAqQ’,S’ exr{ g ) 33
The matrix elementg, .41 in EQ. (31) correspond to
transitions between the stateands’ from neighbor groups
g and g=x 1. Figure 5 illustrates relative amplitudes of the
matrix elementgXys1/|. In accordance with our numera-  As was shown above, in our model the Arnol'd diffusion
tion of the states, matrix elements at the center of Fig. ®ccurs along the coupling resonance, or, the samegj in
correspond to transitions between the lowest states in eadpace. This means that a wave packet initially localized at
group, and matrix elements at the corners define the transg=0 spreads diffusively in time. In order to observe this
tions between the states above accumulation points. The latlynamics, below we introduce specific variables that charac-
ter elements quickly decrease with an increase of the differterize global structure of wave packets. But, first, we discuss
ence|s—s'|. the structure of QE eigenstatéa terms of these new vari-
The “cross” at the center of Fig. 5 where matrix elementsables since it helps us to understand the mechanism of quan-
are relatively large, corresponds to a transition between sep&aim Arnol’d diffusion.

C. Numerical data
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(@ - (b) 10'
0.001f . 1
1 o
. 0
— : - R 10" ¢
q o= q oo il
1 -2
Ay ot |
— 10
i -0.001 | 4
0 0.5 0 0.005 2
4 4 10
(©) :
1 - . .’ . ] 10—3 L N
IR o 0 500 1000
qo.....w.:. N
1 b | FIG. 7. Normalized variancé, of the energy versus the res-
TP - caled timeN for three different initial stategfor u=1.25x10 *
0 0.5 1 1.5 2 and f,=1.25<10%). Curves 1-3 correspond to an initial state
%q near the center of the coupling resonance, above the separatrix, and

. — . . from the separatrix layer, respectively.
FIG. 6. Relation betweeq and o, for the QE functlonsAqQ’S in

the regiong=0,=1 for different coupling constantga), (b) w
=3x1075, (c) u=10"4. Each point corresponds to a specific QE
function. Figure @) shows the scaled-up fragment of the central

Now we discuss numerical results for the dynamics of our
model. The evolution of any initial stat€, (0) can be

part of Fig. Ga). computed using the evolution matriX, .o s/ (NT),
ol
In the g space each of QE functiong; s can be globally Cqs(NT)= > Ugsqr.s(NT)Cqr o(0). (35)
characterized by the “mean positionj’ and by the variance a’.s'

o determined as follow§17,18):
We repeat again that our numerical data refer to the regime

P AQ |2 2_ ipny AQ |2, when the values ofc andf, are small enough, so that main
a zq: qu: Aqsl g Eq: (@-a) zs: [Add three resonances are not overlapped.
(34 Quantum dynamics for different initial conditions is

shown in Fig. 7. Here we show typical dependences of the
variance of the energfAH)?=%§w?A, in normalized units
versus timet measured in the numbét of periods of the

. X . external perturbation. The quantity, is defined similar to
6(a)], the QE functions have a very small variance, which hat for the OE ei oA =5 (qea2SC. 12 wh
means a strong localization in tlyespace. that for t eQ 2e|genstat 0= 2q(4—0)"24|Cq %, where
More details are seen in Fig(l§ that shows a magnified d==q02¢Cq¢*. _ _
fragment of Fig. 6a). One can see different groups of QE The data clearly show a different evolution character for
functions, characterizing specific relations betweTarand three initial states taken from below and above the separa-

o4. The first group consists of those eigenstates whose erﬁt'x' as well as from the separatrix layer. For the states taken
ergies are close to the ground statéth a very small vari- 7oM the center of the resonance and well above the separa-

. . 2 . . . . .
ance,aq<10‘3). Another group is characterized by an ir- trix, the variancg AH)“ quasiperiodically oscillates, in con-

— . - trast with the separatrix state. In the latter case, after a short
regular dependence gfon o [region(1) in Fig. &b)]. The .stochastization time the variance of the energy increases lin-

states which belong to this group are chaotic 3separatr|>éarly in time, thus manifesting a diffusionlike spread of the
eigenstates. Regular dependenqgs,) for o4>10"" cor-  \yaye packet.

respond to underseparatrix states wsth0 ands<0. For More results are presented in Fig. 8, where a diffusionlike
very larges this regular structure is destroyed due to thejncrease of the energy is shown for separatrix initial states
influence of two driving resonancésot shown in Fig. ). and for different values ofe. One can see that linear in-
Irregular spread of points in the regi@B) reflects chaos in  rease of the varianc&(N) is typical and occurs after a
the inner region of the coupling resonance, that arises due tort time, which is associated with the time of a fast spread
two secondary resonancégo(2/2=3E; (s+1/2). With an  of packet over the separatrix layer in the transverse direction.
increase ofu [see Fig. 6c)], the regular structure of QE Such a behavior is typical for the classical Arnol'd diffusion.
functions disappears. This means that many of eigenstatdge data allows one to determine the diffusion coefficient as
are chaotic. However, the varianeg remains limited, thus D= (AH)?(N)/(NT), by making use the fit to a linear de-
demonstrating that in thg direction the eigenstates al@ pendencel ,(N) for N>50.

Then, it is convenient to plcﬁversus(rq for all eigenfunc-
tions; see Fig. 6. For small values of the couplpfsee Fig.

calized The fact that many points in Fig(® are distributed We have calculated separately quantum and classical dif-
incidentally, should be treated as the manifestation of quanfusion coefficients and found that the quantum Arnol'd dif-
tum chaos. fusion roughly corresponds to the classical one. However,
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20F

FIG. 10. Dynamical localization of wave packets inside the
FIG. 8. Time dependence of the variance of the energy for sepaseparatrix layer of the coupling resonance. The normalized variance
ratrix initial states and for different values of coupling paramgter  of the energy is shown for different values of the coupling param-
(1) p=10"% (2) u=1.25<10"% (3) u=1.75x10"* and(4) u  eter: (1) u=1.5x10"% (2) w=2.25x10*. Horizontal dashed
=2.25¢10"*. lines indicate the mean valus,.

the data clearly indicate that the quantum diffusion is sysdecreases and for~3x10° it is of the order of one. For

tematically weaker than the classical Arnol'd diffusion; seethis reason the last right point in Fig. 9 corresponds to the
Fig. 9. situation when the classical chaotic motion along the cou-

One should stress that the quantum Arnol'd diffusionPling resonance is completely suppressed by quantum effects
takes places only in the case when the nunMeiof energy ~ (the so-called “Shuryak borderf’15]).
stationary states in the separatrix layer is relatively large. For
the first time, this point was noted by Shurypk5] who D. Dynamical localization
studied the quantum-classical correspondence for nonlinear Since the diffusive motion along the coupling resonance
resonances. In this connection we have to estimate the num:-

ber of the enerav states that occupy the separatrix laver. 'S effectively one-dimensional, one can naturally expect a
ergy py thé sep AYET- - Anderson-like localization. We have already noted that the
However, it is a problem to make reliable analytical esti-

) . variance of QE eigenstates of the evolution operator is finite
mates of the width of the separatrix layer for our model. As. . ; .

i . in the g space. This means that eigenstates are localized, and
was shown in Ref{20], in the case of many-frequency per-

turbation, secondary resonances play a dominant role in thteh e wave packet dynamics in this direction has to reveal the

) . . saturation of the diffusion. More specifically, we expect that
formation of chaos in a separatrix layer. Indeed, as wa:

. i The linear increase of the variance of the energy ceases after
shown above, the role of such resonances is quite strong in T
some characteristic time.

our case of the two-frequency perturbation. For this reason, . . o
. : : This effect, known as thalynamical localization has
we have performed a direct numerical calculation of the, . ) :
. . - . . been discovered in Ref$21,22 for the kicked rotor, and
width of stochastic separatrix layer for the classical Hamil-

. : . was studied later in different physical modétsee, for ex-
tonian, and used these results in order to estimate the number .

. . . -~ —ample, Ref[1] and references thergirOne should note that
of separatrix energy levels in the corresponding energy inter; . R A .
val the dynamical localization is, in principle, different from the

We have found that for>1.25x 10~ the numbeM, of Anderson localization, since the latter occurs for models with

) . : . . random potentials. In contrast, the dynamical localization
stationary states in the separatrix chaotic layer is more th in d . ith i
10; therefore, one can speak about a kind of stochastizatio agp_eng n y_nam|c|sﬂw|tt) out any ran lomr_leﬁ;lssdy;tems,
in this region. On the other hand, with a decrease in then is due to interplay betweeweel classical diffusion

. — and (strong quantum effects.
coupling(see data in Fig. 9 for 1u>100), the numbeM In order to observe the dynamical localization in our

model (along the coupling resonance inside the separatrix

-14 F ' ' i layen, one needs to study long-time dynamics of wave pack-
. ets. Our numerical study for large timéé~10* have re-
SN, 1 vealed that after some time-ty~10°T, the diffusionlike
long “‘“'\ evolution stops for all range of coupling parameter In-
-16 ¢ \ 1 stead, for larger times, the variandg, starts to oscillate
L\ around the mean valug,. The period of such oscillations
17¢ \ ] depends onu nonmonotonically and varies from 3D to
8l 10°T. Two examples of such a long-time dynamics are given
75 100 in Fig. 10.

@ One can argue that the localization length is of the order
B of the width of wave packet after the saturation of the diffu-

FIG. 9. Quantum(squares and classicalsolid ling diffusion sion[22]. Therefore, the localization length can be associ-
coefficients for different values qi. ated with the square root df ;. We have numerically found

036211-8



QUANTUM ARNOLD DIFFUSION IN A SIMPLE . .. PHYSICAL REVIEW E 66, 036211 (2002

7I5 160
1WE

FIG. 11. The dependence 4f; on W FIG. 12. Distribution of the probabilityV,, averaged over time

) - ] _ t=10'T, versus the group number (1) =0, f,=107%; (2
the exponential dependenag, on 1/\/;, see Fig. 11. This _ fo=2X10"; (S)QM:EOJ foﬁl(ole’.‘and(g ,u=2><§0)*‘lf
result is not surprising becauseDnis proportional to 1/ fo=2X10"°.

(see Fig. 9 andt is practically independent qi.

It should be noted .tﬂat thﬁ spreadl_ of Eacket:k iand | fusion coefficient on model parameters roughly follows the
space occurs even without the coupling between two resqs qqical dependence. However, the quantum diffusion is sys-

nances, due to the mfluence of the time-dependent pertur.b?ématically slower than the classical one. This fact is obvi-
tion (see Sec. Il A. For this reason one should compare th'sously due to the influence of quantum effects

spread to that determined by the Arnol'd diffusion. Our ad-—°sn51d be stressed that the quantum Arnol'd diffusion
ditional study clearly show that these two effects are very, . s in a deep semiclassical region, specifically for the

different; see Fig. 12. 2 N
' Lo 5 case when the numbévi of chaotic eigenstates inside the
errte, f\;ve tphlotteol thi. prOf'IWq_EhS|quS| of the \g_r?]\.’e stohastic layer is sufficiently largéof the order of 10 or
packet after the saturation versus the group nur,nb IS Jarged. With a decrease of the coupling parameter, the diffu-
figure demonstrates the main effect of the Arnol’d d|ffu5|onSion coefficient strongly decreases, and Nby=<1 the diffu-

along the coupling resonance. One can see that in all cas Hn disappears. Therefore, we can see how strong quantum

t_Pr?re 'ﬁ an expotnept;al cljocalliﬁtloln oflpa(t:.ketsl md;ﬁpgc? deffects destroy the diffusive dynamics of the wave packets.
IS allows ‘usS 1o introduce he localization iength delin€d - anqther manifestation of quantum effects is the dynami-

from the decrease of the probability in the tails of packets

usion ceases, and after some characteristic time it termi-
nates. This effect is similar to that discovered in the kicked

rotor model[21] and studied later in other physical systems

(see, for example, Refl] and references thergirHowever,

IV. SUMMARY in our case the dynamical localization arises for a weak

We have studied the Hamiltonian system of two coupIeoCha°$ inside the separatrix Iaye_r, in contra;t to previqu; mod-
nonlinear oscillators, one of which is under the influence of8!S With @ stronggloba) chaos in the classical description.

the time-dependent perturbation with two commensurate fre- Our results may _find confirmatipn in expe_riments on one-
guencies. In the classical description, the separatrix of thglectron dynamics in two-dimensional semiconductor quan-

coupling resonance is destroyed due to the perturbation, arfy™ Pilliards, where the charged particle motion is deter-
the Arnol’d diffusion occurs along this resonance inside amined by the Hamiltonian of the type(’s7) and(1§). Itis
narrow stochastic layer. Our numerical data performed fof"IISO possible that the quantum Armol'd dlf‘fUS'IOI’I oceurs 1n
the quantum analog of the system, allow us to make th _uclear dynamics of complex molecules driven by laser
following conclusions about the properties of the quantu ields [23].
Arnol'd diffusion.
By studying the quasiengrgy eigenstates of the evoIL_Jtion ACKNOWLEDGMENTS
operator, we have found an irregular structure of those eigen-
states that correspond to the stochastic layer. These eigen- The authors are thankful to B. Chirikov for stimulating
states turned out to be exponentially localized along the coudiscussions. We also thank D. Kamenev for their help in the
pling resonance, with the localization length strongly performance of some calculations at the early stage of our
enhanced in comparison with the case of noncoupled osciwork. We wish to thank D. Leitner and P. Wolynes for draw-
lators. ing our attention to Ref{8]. This work was supported by
The study of wave packet dynamics for different initial Grants RFBR No. 01-02-17102, by the Ministry of Educa-
states has revealed a diffusionlike spread of packets alorigpn of Russian Federation through Grant No. E00-3.1-413,
the coupling resonance, if initial states correspond to the stcand by “Universities of Russia.” F.M.l. acknowledges the
chastic layer. We have found that the dependence of the diupport of CONACyT(Mexico) through Grant No. 34668-E.

tors for u=0 (q=k+I andl=0).

036211-9



DEMIKHOVSKII, IZRAILEV, AND MALYSHEV PHYSICAL REVIEW E 66, 036211 (2002

[1] A.J. Lichtenberg and M.A. Liebermarmegular and Chaotic Herrera, AIP Conf. Proc. No. 57AIP, New York, 1979, p.
Dynamics (Springer-Verlag, New York, 1992 L.E. Reichl, 323; J.L. Tennyson, M.A. Lieberman, and A.J. Lichtenberg,
The Transition to ChaoéSpringer-Verlag, New York, 1992 ibid., p. 272.

[2] V.I. Arnol'd, DAN USSR 156, 9 (1964). [12] B.V. Chirikov and V.V. Vecheslavov, J. Stat. Phy&l, 243

[3] Resonances in the Motion of Planets, Satellites and Asteroids (1993 [JETP112 1132(1997].
edited by S. Ferraz-Mello and W. Sessiniversidade de Sao [13] T.M. Fromholdet al. Phys. Rev. Lett87, 046803(2002J.

Paulo, Sao Paulo, Brazil, 1985 [14] A.A. Chernikov, R.Z. Sagdeev, D.A. Usikov, M.Yu. Zakharov,
[4] J. Binney and S. Tremain&alactic DynamicgPrinceton Uni- and G.M. Zaslavsky, Naturg.ondon 326, 559 (1987).

versity Press, Princeton, NJ, 1987 [15] E.V. Shuryak, Zh. Eksp. Teor. Fiz1, 2039(1976].
[5] B.V. Chirikov, Phys. Rep52, 263(1979. [16] V.Ya. Demikhovskii, F.M. Izrailev, and A.l. Malyshev, Phys.
[6] Nonlinear Dynamics Aspects of Particle Accelerajdrscture Rev. Lett.88, 154101(2002. ;

Notes in Physics Vol. 247Springer-Verlag, Berlin, 1986 [17] G.P. Berman, O.F. Vlasova, and F.M. Izrailev, Zlksg. Teor.
[7] J. von Milczewski, G.H.F. Diercksen, and T. Uzer, Phys. Reuv. Fiz. 93, 470(1987 [Sov. Phys. JETB6, 269 (1987].

Lett. 76, 2890(1996. [18] M. Toda, Phys. Lettl10A, 235(1985.
[8] D.M. Leitner and P.G. Wolynes, Phys. Rev. L&, 55(1997). [19] V.Ya. Demikhovskii, D.I. Kamenev, and G.A. Luna-Acosta,
[9] B.V. Chirikov, E. Keil, and A.M. Sessler, J. Stat. Ph$s.307 Phys. Rev. E59, 294 (1999; V.Ya. Demikhovskii and D.I.

(1972). Kamenev, Phys. Lett. 228 391 (1997).

[10] G.V. Gadiyak, F.M. Izrailev, and B.V. Chirikov, iRroceedings  [20] V.V. Vecheslavov Zh. Eksp. Teor. Fi209, 2208(1996)].
of the 7th International Conference on Nonlinear Oscillations [21] G. Casati, B.V. Chirikov, F.M. Izrailev, and J. Ford, Lect.

Berlin (Akademie-Verlag, Berlin, 19%7Vol. 1I-1, p. 315; In- Notes Phys93, 334(1979.
stitute of Nuclear Physics, Report No. 74-79, 190hpub-  [22] B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, Sov. Sci.
lished. Rev.2C, 209(198)).

[11] B.V. Chirikov, J. Ford, and F. Vivaldi, itNonlinear Dynamics [23] D.S. Perry, G.A. Bethardy, and M.J. Davis, J. Go, Discuss.
and the Beam-Beam Interactioedited by M. Month and J.C. Faraday Socl02 215(1995.

036211-10



