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Quantum Arnol’d diffusion in a simple nonlinear system
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We study the fingerprint of the Arnol’d diffusion in a quantum system of two coupled nonlinear oscillators
with a two-frequency external force. In the classical description, this peculiar diffusion is due to the onset of
a weak chaos in a narrow stochastic layer near the separatrix of the coupling resonance. We have found that
global dependence of the quantum diffusion coefficient on model parameters mimics, to some extent, the
classical data. However, the quantum diffusion happens to be slower than the classical one. Another result is
the dynamical localization that leads to a saturation of the diffusion after some characteristic time. We show
that this effect has the same nature as for the studied earlier dynamical localization in the presence of global
chaos. The quantum Arnol’d diffusion represents a new type of quantum dynamics and can be observed, for
example, in two-dimensional semiconductor structures~quantum billiards! perturbed by time-periodic external
fields.
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I. INTRODUCTION

As is well known, dynamical chaos in Hamiltonian sy
tems is related to the destruction of separatrices of nonlin
resonances. For a strong interaction between the resona
the latter can overlap in the phase space, thus leading
global chaosfor which chaotic region is spanned over th
whole phase space of a system, although large isolate
lands of stability may persist. For a weak interaction, chao
motion occurs only in the vicinity of separatrices of the res
nances, in accordance with the Kolmogorov-Arnol’d-Mos
~KAM ! theory ~see, for example, Ref.@1#!.

In the case of two degrees of freedom (N52), the pas-
sage of the trajectory from one stochastic region in ph
space to another is blocked by KAM surfaces. The situat
changes drastically in many-dimensional systems (N.2),
where the KAM surfaces no longer separate one stocha
region from another, andchaotic layersof destroyed separa
trices form astochastic webthat can cover the whole phas
space. Thus, if trajectory starts inside the stochastic we
can diffuse throughout the phase space. This weak diffus
along stochastic webs was predicted by Arnol’d in 1964@2#,
and since that time it is known as a very peculiar pheno
enon, universal for nonlinear Hamiltonian systems w
N.2.

There are many physical systems whose behaviors ap
to be strongly affected by the Arnol’d diffusion. As ex
amples, one should mention three-body gravitational syst
@3# and galactic dynamics@4#. It is argued that the Arnol’d
diffusion may have strong impact on the behavior of o
solar system, it is also responsible for a loss of electron
magnetic traps~see discussion and references in Ref.@5#!.
From the practical point of view, the Arnol’d diffusion ma
be dangerous for long-time stability of motion of charg
particles in high energy storage rings@6#.

Recently, the Arnol’d diffusion was explored in the cla
sical description of Rydberg atoms placed in crossed st
electric and magnetic fields@7#. The semiclassical approac
has been used for the stochastic pump model@8#, where the
1063-651X/2002/66~3!/036211~10!/$20.00 66 0362
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effect of quantization of the Arnol’d diffusion in a system o
two pairs of weakly coupled oscillators has been inve
gated.

For the first time, the Arnol’d diffusion was observed
the numerical study of a four-dimensional nonlinear map@9#.
The more physical model of two coupled nonlinear oscil
tors with time-dependent perturbation was considered, b
analytically and numerically, in Refs.@10,11# ~see also re-
view @5# and the books@1#!. Numerical experiments with this
model have confirmed analytical estimates obtained for
diffusion coefficient in dependence on model parameters~for
recent studies on this subject see Ref.@12#!. Note that the
direct numerical study of the Arnol’d diffusion is quite dif
ficult since its rate is exponentially small, and it occurs on
for initial conditions inside very narrow stochastic layers.

One should distinguish the stochastic web for the Arno
diffusion from that found for systems that are linear in t
absence of a perturbation, see, for example, Ref.@13#. In the
latter case the stochastic web arises around asinglenonlinear
resonance that has infinite number of cells in the phase s
~see Ref.@14# and references therein!.

So far, the studies of the Arnol’d diffusion have bee
restricted by the classical~or semiclassical! approaches. On
the other hand, it is important to understand the influence
quantum effects. The problem is not trivial since stro
quantum effects can completely suppress weak diffus
along narrow stochastic layers, even in a deep semiclas
region @15#. The purpose of this work is to study the finge
print of the Arnol’d diffusion in a quantum model, by mak
ing use of a direct numerical simulation of some nonline
system, both in the classical and in the quantum descript
Preliminary data are reported in Ref.@16#.

The paper is organized as follows. In Sec. II, the ba
model is introduced and discussed. We describe briefly
mechanism of the classical Arnol’d diffusion in classical sy
tem and give the expression for the diffusion coefficie
Section III is devoted to the study of the quantum mod
First, in Sec. III A, we study the structure of eigenstates
the stationary model~without an external field!. Second, in
©2002 The American Physical Society11-1
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DEMIKHOVSKII, IZRAILEV, AND MALYSHEV PHYSICAL REVIEW E 66, 036211 ~2002!
Sec. III B, we show how to construct the evolution opera
that allows us to investigate the dynamics of the syste
Here we also discuss the global properties of quasiene
states. Next step of our consideration~Sec. III C! is the study
of the evolution of the system for different initial condition
and model parameters. We show that for initial states co
sponding to the stochastic layer near the separatrix of
coupling resonance, the motion has a diffusionlike charac
We calculate the quantum diffusion coefficient and comp
it with the classical one. Quantum effects of the dynami
localization and suppression of the classical diffusion are
cussed in Sec. III D. In Sec. IV, we give our conclusions
summarizing the main results, and shortly discuss the p
sible systems in which the quantum Arnol’d diffusion m
be observed.

II. CLASSICAL MODEL

In this section, we discuss the main results of the Arno
diffusion obtained in Ref.@10# for a classical model. The
Hamiltonian of this model describes two nonlinear oscil
tors coupled by the linear term, and governed by an exte
force f (t),

H5
px

2

2
1

py
2

2
1

x4

4
1

y4

4
2mxy2x f~ t !. ~1!

Herepx andpy are momentums in thex andy directions, and
m is the coupling constant. The driving term consists of t
harmonics of the same amplitudef 0 ,

f ~ t !5 f 0~cosV1t1cosV2t !, ~2!

with commensurate frequenciesmV15nV2 , so that the pe-
riod is T52pn/V152pm/V2 .

Without the coupling (m50) and in the absence of th
perturbation (f 050), the motion of each oscillator is inte
grable and can be found analytically. The quartic form of
potentials has been chosen in order to have simple analy
expressions in comparison with more realistic models w
additional quadratic termsx2/2 andy2/2 in the Hamiltonian.

An interesting feature of the system of quartic oscillato
is a small contribution of higher harmonics in spite of
strong nonlinearity. Indeed, the solution forx(t) has the form
~for details see Ref.@5#!,

x~ t !

a
5cn~vt !5pA 2

K~ 1/A2!
(
n51

` cos@~2n21!vt#

cosh@p~n21/2!#

'0.9550 cosvt1
cos 3vt

23
1

cos 5vt

232
1•••, ~3!

wherea is the amplitude of oscillations andK(1/A2) stands
for the complete elliptic integral of the first kind. One ca
see that the amplitudeam of higher harmonics sharply de
creases with an increase ofm. Therefore, in action-angle
variablesI x ,Qx one can approximately represent the posit
03621
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of the x oscillator by the expressionx'a(I x)cosQx . Then
the system under consideration is described by the Ha
tonian

H5A~ I x
4/31I y

4/3!2ma~ I x!a~ I y!cosQx cosQy

2a~ I x!cosQxf ~ t !, ~4!

with

A5S 3p

4A2K~1/A2!
D 4/3

and a~ I x,y!5~4A!1/4I x,y
1/3 .

Near the coupling resonancevx5vy , the resonance
phaseQx2Qy and the amplitudesax , ay oscillate. Thus, it
is convenient to introduce slow (u15Qx2Qy) and fast (u2
5Qx1Qy) phases by making use of the canonical transf
mation with the generating function

F5~Qx2Qy!I 11~Qx1Qy!I 2 . ~5!

As a result, new actionsI 1 and I 2 are expressed as follows

I 15
I x2I y

2
, I 25

I x1I y

2
. ~6!

For the coupling resonance we haveI x'I y , henceI 1!I 2 ,
and the resonance HamiltonianHres gets the form

Hres52AI2
4/31

B

2
I 1

22V~cosu11cosu2!

2 f 0a~ I 2!cosS u11u2

2 D ~cosV1t1cosV2t !, ~7!

with B(I 2)58/9(AI2
22/3) andV(I 2)5ma2(I 2)/2.

The average of Eq.~7! over the fast phaseu2 gives the
‘‘pendulum’’ Hamiltonian

H̃52AI2
4/31

B

2
I 1

22V cosu1 . ~8!

It defines the frequencyṽ of small oscillations ofu1 andI 1 ,

ṽ5ABV5bAm, b5
p

2K~1/A2!
'0.85, ~9!

and the half-widthDv of the coupling resonance,

Dv5bA2m. ~10!

Comparing Eqs.~7! and ~8!, one can understand that th
time-dependent perturbation destroys the separatrix of
coupling resonance, and gives rise to a chaotic motion in
vicinity of the separatrix. Specifically, the actionI 2 reveals a
weak Arnol’d diffusionalong the coupling resonanceinside
the stochastic layer.

Thus, the long-term dynamics we are interested in is c
trolled by three resonances, one coupling and two driv
ones. The first-order driving resonances are determined
1-2
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QUANTUM ARNOL’D DIFFUSION IN A SIMPLE . . . PHYSICAL REVIEW E 66, 036211 ~2002!
the conditionvx(I x)5V1 , V2 , where vx54A/3(I x
1/3). In

fact, the coupling resonancevx5vy serves as aguiding
resonancealong which the diffusion takes place.

All three resonances are characterized by their wid
they can overlap with each other if the coupling constanm
and perturbation strengthf 0 are large enough. In order t
observe the Arnol’d diffusion, one needs to avoid such
overlap since it leads to a strongglobal chaos. The condition
for the overlap of the resonances reads

Dv112
Dv

A2
1Dv2>dV, ~11!

where

Dv i5bA2 f 0

a
~12!

is the half-width of thei th driving resonance,dV5uV1
2V2u. From Eqs.~10! and~12!, one can obtain for the over
lap

A2 f 0

a
1Am>

dV

2b
. ~13!

The Arnol’d diffusion occurs in the case where inequal
~13! does not satisfy.

In principal, the Arnol’d diffusion arises in our mode
even for one driving resonance. However, in this case,
rate of the diffusion will be strongly dependent on the d
tance between the position of a trajectory inside the stoc
tic layer, and the driving resonance in the frequency spa
Instead, for two driving resonances the Arnol’d diffusion
almost homogeneous if one starts in between the two driv
resonances. This simplifies the analytical treatment of
diffusion that has been performed in Ref.@10#. Leaving aside
technical details, we briefly comment below on the appro
used in Ref.@10#.

In order to obtain the diffusion coefficient for a diffusio
along the coupling resonance, one needs to find the cha
of the total Hamiltonian over the half period of the unpe
turbed motion near the separatrix. Therefore, the diffus
coefficient can be evaluated as follows:

D5
~DH ! 2

Ta
, ~14!

whereTa is the averaged period of motion within the sep
ratrix layer. The change of the Hamiltonian depends on
initial phase; however, successive values of the phase ca
treated as random and independent. The variation of the
energy is then determined by the sum over many periods
which successive phases can be obtained via theseparatrix
map. Analytical estimates obtained in Ref.@10#, give the fol-
lowing expression for the diffusion coefficient~in action!:

DI5
a f0

Taṽ
S ws

2

l4 D . ~15!
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Herews54pnl2e2pl/2 is the half-width of the chaotic laye
of the coupling resonance, which mainly depends on

adiabaticity parameterl5dV/2ṽ, with ṽ determined by
Eq. ~9!.

We performed a numerical study of the classical Arno
diffusion in the system described by the Hamiltonian~4!.
The frequencies of the perturbation~2! were chosen asV1

50.2094 andV250.2513 resulting in the periodT5150.
Therefore, v5(V11V2)/250.230 35, which determine
the amplitudea'0.2719. Correspondingly, the initial cond
tions were taken for the system to be in between the
driving resonances.

To put the system inside the stochastic layer of the c
pling resonance it is necessary to takeu156p. As in Ref.
@10#, the ratio f 0 /m50.01 was taken small enough to avo
the overlapping of three first-order resonances@see Eq.~13!#.
This also suppresses the influence of second-order r
nances between the unperturbed nonlinear motion and
external perturbation.

The schematic structure of the coupling resonance
shown in Fig. 1. Numerical data are obtained for differe
initial conditions corresponding to the separatrix layer and
the resonance region of the coupling resonance. The cha
region inside the resonance is due to second-order r
nances between nonlinear motion of the unperturbed Ha
tonian and the two-frequency perturbation. The condition

the secondary resonances isnṽ85mdV. Hereṽ8 is the fre-
quency of oscillations at the coupling resonance~near the

resonance center we haveṽ8→ṽ5bAm), andn,m are in-
tegers. One can find that the stochastic region inside the r
nance corresponds tom51 andn54. As one can see, wea
diffusion along the coupling resonance can occur both wit
the separatrix layer and inside the chaotic region formed
second-order resonances.

The diffusion coefficient was computed as follows:

FIG. 1. Three sections (I 1 ,u1) of the phase space for differen
values ofI 2 are shown for the Hamiltonian~4! with the force~2!
with m5231024, f 05231026. The Arnol’d diffusion takes place
along theI 2 direction; see details in the text.
1-3
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DEMIKHOVSKII, IZRAILEV, AND MALYSHEV PHYSICAL REVIEW E 66, 036211 ~2002!
Dn5
~DH̄ !2

10nT
. ~16!

Here H̄ is the value of the total Hamiltonian~4!, averaged
over time intervalsTn of length 10nT with n52,3. The sec-
ond average in Eq.~16! has been done in the following way
Having the mean valueH̄ in each intervalTn for a fixedn,
we computed the differenceDH̄ between adjacent intervals
and averaged the variance (DH̄)2 over all differences. This
procedure was taken in order to suppress large fluctuation
the energy, and to reveal a stochastic character of mo
Specifically, in the case of a true diffusion, one should exp
D2'D3 .

The dependence of diffusion coefficientsD2 and D3 on
initial phaseu1 for I 15u250 andI 25v3/(3b4) at t50 is
shown in Fig. 2. The region close tou152p corresponds to
initial conditions inside the separatrix layer, and the inter
nearu152p/2 corresponds to initial conditions inside th
inner stochastic region~see Fig. 1!. In both these regions
Arnol’d diffusion coefficients have the same order. Appro
mate equalityD2'D3 indicates here that the motion is real
diffusionlike @10#. On the other hand, strong difference b
tweenD2 andD3 in the regionuu1u,p/4 manifests that the
dynamics of the system is nondiffusive.

III. QUANTUM MODEL

The corresponding quantum model is described by
Hamiltonian@compare with Eq.~1!#,

Ĥ5Ĥx
01Ĥy

02mxy2 f 0x~cosV1t1cosV2t !. ~17!

Here

Ĥx
05

p̂x
2

2
1

x4

4
, Ĥy

05
p̂y

2

2
1

y4

4
, ~18!

and standard relations for momentum and coordinate op
tors are assumed,

@ p̂x , x#52 i\0 , @ p̂y , y#52 i\0 , ~19!

with the dimensionless Planck’s constant\0 .
In order to investigate the evolution of the system, first

have to find stationary eigenstates of the unperturbedf 0

FIG. 2. Dependence of the diffusion coefficient on initial co
ditions inside the coupling resonance; see details in the text.
03621
of
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50) system, corresponding to the vicinity of the couplin
resonancevx5vy . At the second stage, we will use th
Floquet formalism when considering the time-periodic p
turbation for f 0Þ0. Specifically, we construct the evolutio
operator in one periodT of the perturbation, that allows on
to study the dynamics over many periods.

A. Stationary states of the coupling resonance

It is natural to represent the stationary states of the un
turbed Hamiltonian,

Ĥs5Ĥx
01Ĥy

02mxy, ~20!

in terms of the eigenstates of uncoupled (m50) nonlinear
oscillators,

c~x, y!5(
n,m

cn,mcn
0~x!cm

0 ~y!. ~21!

Herecn
0(x), cm

0 (y) are the eigenfunctions ofĤx
0 , Ĥy

0 ~which
will be calculated numerically!, and the coefficientscn,m sat-
isfy the following stationary Schro¨dinger equation:

Ecn,m5~En1Em!cn,m2m (
n8,m8

xn,n8ym,m8cn8,m8 , ~22!

with En andEm as eigenvalues of the HamiltoniansĤx
0 and

Ĥy
0 , respectively.
At the center of the coupling resonancevn0

5vm0
, we

haven05m0 and \0vn0
5En0

8 , \0vm0
5Em0

8 . Near to this

resonance it is convenient to expandEn and Em in Tailor
series up to second-order terms. This allows one to introd
new indicesp5k1 l and k via the relationsn2n05k and
m2m05 l . Then our system~22! can be written in the fol-
lowing form:

Eck,p5F\0vp1En0
9 S k22pk1

p2

2 D Gck,p

2mS •••1(
k8

xk,k8yp2k,212k8 ck8,21

1(
k8

xk,k8yp2k,2k8 ck8,0

1(
k8

xk,k8yp2k,12k8 ck8,11••• D ~23!

with v[vn0
. One should note that matrix elementsxm,n and

ym,n of the coordinatesx andy are equal to zero for transi
tions between the states of equal parity. Therefore, the e
solution of the system~23! is characterized by two indepen
dent sets of odd and even parity eigenstates~for odd and
evenp, respectively!.

Below we consider the case of a small nonlinearity,
1-4
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\0vp@En0
9 S k22kp1

p2

2 D . ~24!

This allows us to characterize all states by the group num
q, and by the indexs that stands for energy levels inside ea
group. In fact,q ands are similar tofast andslow classical
variables characterizing the motion inside the coupling re
nance. Therefore, the energy in each group can be writte
Eq,s5\0vq1Eq,s

M , whereEq,s
M is the Mathieu-like spectrum

of one group.
Numerical data for a fragment of the energy spectrum

shown in Fig. 3. One can see that the spectrum consist
series of energy levels, shifted one from another by the va
\0v. Note that the structure of the energy spectrum in e
group is typical for a quantum nonlinear resonance@17#.
Lowest levels are practically equidistant with the spac
equal to\0ṽ, whereṽ is the classical frequency of sma
phase oscillations at the coupling resonance. Accumula
points correspond to classical separatrices, and all en
levels inside the separatrices are nondegenerate. The s
slightly above separatrices are quasidegenerate due to
symmetry of a rotation in opposite directions.

Typical structure of eigenstates for differents is shown in
Fig. 4. Note that ground states in each group correspon
s50, and next stationary states, reordered according to
energy increase, are labeled by 1,21,2,22, . . . , etc. The
eigenstates inside the resonance are symmetrical with res
to k50. One can see that the main maximum correspond
p50, although there are small additional maxima atp5
62,64, . . . . Thedegree of delocalization in thek space for
eigenstates inside the coupling resonance strongly dep
on the energy of eigenstates. Specifically, the closer the
ergy is to that corresponding to the separatrix, the more
localized the eigenstate is. Above the separatrix all eig
states are characterized by the maximums of the probab
located symmetrically with respect tok50 for statess and
2s; see Figs. 4~c! and 4~d!.

B. Evolution matrix

Now we consider the dynamics of our model in the pr
ence of the external two-frequency perturbation acting on
x oscillator. The frequenciesV1 andV2 are commensurable

FIG. 3. Energy spectrum of the system~23! in normalized units
eq,s5Eq,s /\0v for m51024, \051.773 2131025, andn05446.
Three groups with 121 states in each group are shown.
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so that the external force is periodic with the peri
T5 iT15 jT2 , whereT152p/V1 , T252p/V2 , and i, j are
integers. The initial conditions were taken for the system
be about halfway between the two driving resonancesv
5(V11V2)/2.

Since the Hamiltonian~17! is periodic in time, in accor-
dance with the Floquet theory the solution of the nonstati
ary Schro¨dinger equation can be written in the followin
form:

c~x,y,t !5expS 2
i«Qt

\0
DuQ~x,y,t !. ~25!

Here uQ(x,y,t)5uQ(x,y,t1T) is the quasienergy function
with the corresponding quasienergy~QE! «Q . The QE func-
tions and quasienergies are, in fact, the eigenfunctions
the eigenvalues of the evolution operatorÛ(T) that describes
the evolution of the system within one period of the exter
perturbation,

Û~T!uQ~x,y!5expS 2
i«QT

\0
DuQ~x,y!. ~26!

Since we are interested in wave functions only in discr
times NT with integerN, we omitted the argumentt in Eq.
~26!.

In order to construct the evolution operator, we repres
the QE functions as follows:

FIG. 4. Probabilityuck,pu2 for eigenstates at the coupling res
nance forq50, m51024, and different values ofs. ~a! The lowest
level ~ground state! for s50; ~b! near-separatrix level fors530;
~c!, ~d! above-separatrix levels fors5635.
1-5
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uQ~x,y!5(
q,s

Aq,s
Q cq,s~x,y!. ~27!

Here the functionscq,s(x,y) are eigenstates of the stationa
HamiltonianĤs @see Eq.~20!#, and the coefficientsAq,s

Q are

the eigenvectors of the operatorÛ in the representation o
Ĥs . These eigenvectors can be found by a direct diago
ization of the corresponding matrixUq,s;q8,s8 .

To obtain the matrixUq,s;q8,s8 we have used the following
procedure. Let the evolution operatorÛ act on an initial state
Cq,s

(q0 ,s0)(0)5dq,q0
ds,s0

. Then the wave functionCq,s
(q0 ,s0)(T)

at timeT forms the column of the evolution operator matri

Uq,s;q8,s8~T!C
q8,s8

(q0 ,s0)
~0!5Uq,s;q0 ,s0

~T!5Cq,s
(q0 ,s0)

~T!.
~28!

Repetition of this procedure for different initial state

Cq,s
(q8,s8)(0)5dq,q8ds,s8 allows one to find the whole matrix

Uq,s;q8,s8(T). As a result, the wave functionCq,s
(q0 ,s0)(T) can

be computed numerically by integration of the nonstation
Schrödinger equation in the presence of the time-depend
perturbation,

i\0Ċq,s5~\0vq1Eq,s
M !Cq,s2 f 0 (

q8,s8
xq,s;q8,s8~cosV1t

1cosV2t !Cq8,s8 . ~29!

By introducing the slow amplitudebq,s(t) via the transfor-
mation

Cq,s~ t !5bq,s~ t !exp@2 i ~qv1Eq,s
M /\0!t#, ~30!

one can obtain

i\0ḃq,s52 f 0 cosS dV

2
t D

3(
s8

@xq,s;q11,s8bq11,s8e
2 i (E

q11,s8
M

2Eq,s
M )t/\0

1xq,s;q21,s8bq21,s8e
2 i (E

q21,s8
M

2Eq,s
M )t/\0#, ~31!

where dV5V12V2 . In the resonance approximation w
keep, in Eq.~31!, only the most important slowly oscillating
terms withq85q61.

The matrix elementsxq,s;q61,s8 in Eq. ~31! correspond to
transitions between the statess ands8 from neighbor groups
q and q61. Figure 5 illustrates relative amplitudes of th
matrix elementsux0,s;1,s8u. In accordance with our numera
tion of the states, matrix elements at the center of Fig
correspond to transitions between the lowest states in e
group, and matrix elements at the corners define the tra
tions between the states above accumulation points. The
ter elements quickly decrease with an increase of the dif
enceus2s8u.

The ‘‘cross’’ at the center of Fig. 5 where matrix elemen
are relatively large, corresponds to a transition between s
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ratrix states. The important point is that the transition b
tween such states of neighbor groups~along the coupling
resonance! is much stronger than those between other sta
This phenomenon is analogous to the quantum diffusion
side a separatrix, which was observed in Ref.@19# for a de-
generate Hamiltonian system.

As a result, a numerical procedure for computing the d
namics of our model is as follows. First, we solve Eq.~31!
and construct the evolution matrixUq,s;q8,s8(T) by making
use of Eq.~30!. Then, direct diagonalization of this matri
yields the eigenvalues«Q and the eigenvectorsAq,s

Q . Once
the eigenvalues«Q and the eigenvectorsAq,s

Q are obtained,
one gets the evolution operator for one period,

Uq,s;q8,s8~T!5(
Q

Aq,s
Q Aq8,s8

Q* expS 2
i«QT

\0
D . ~32!

By raisingUq,s;q8,s8(T) to theNth power and using the or
thogonality condition for the eigenvectorsAq,s

Q , one can ob-
tain the evolution operator that propagates the system ovN
periods of the external perturbation,

Uq,s;q8,s8~NT!5(
Q

Aq,s
Q Aq8,s8

Q* expS 2
i«QNT

\0
D . ~33!

C. Numerical data

As was shown above, in our model the Arnol’d diffusio
occurs along the coupling resonance, or, the same, iq
space. This means that a wave packet initially localized
q50 spreads diffusively in time. In order to observe th
dynamics, below we introduce specific variables that char
terize global structure of wave packets. But, first, we disc
the structure of QE eigenstates~in terms of these new vari
ables! since it helps us to understand the mechanism of qu
tum Arnol’d diffusion.

FIG. 5. Matrix elementsuxq,s;q61,s8u that define the transition
probability along the coupling resonance~for the same parameter
as in Fig. 3!. Different values of the matrix elements are shown
gray scaled symbols. Black squares at the diagonal of the ma
have the values six orders of magnitude higher than those of m
elements labeled by gray rhombuses.
1-6
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QUANTUM ARNOL’D DIFFUSION IN A SIMPLE . . . PHYSICAL REVIEW E 66, 036211 ~2002!
In the q space each of QE functionsAq,s
Q can be globally

characterized by the ‘‘mean position’’q̄ and by the variance
sq

2 determined as follows@17,18#:

q̄5(
q

q(
s

uAq,s
Q u2, sq

25(
q

~q2q̄!2(
s

uAq,s
Q u2.

~34!

Then, it is convenient to plotq̄ versussq for all eigenfunc-
tions; see Fig. 6. For small values of the couplingm @see Fig.
6~a!#, the QE functions have a very small variance, wh
means a strong localization in theq space.

More details are seen in Fig. 6~b! that shows a magnified
fragment of Fig. 6~a!. One can see different groups of Q
functions, characterizing specific relations betweenq̄ and
sq . The first group consists of those eigenstates whose
ergies are close to the ground state~with a very small vari-
ance,sq,1023). Another group is characterized by an
regular dependence ofq̄ on sq @region~1! in Fig. 6~b!#. The
states which belong to this group are chaotic separa
eigenstates. Regular dependencesq̄(sq) for sq.1023 cor-
respond to underseparatrix states withs.0 and s,0. For
very larges this regular structure is destroyed due to t
influence of two driving resonances@not shown in Fig. 6~b!#.
Irregular spread of points in the region~2! reflects chaos in
the inner region of the coupling resonance, that arises du
two secondary resonances\0dV/253En0

9 (s11/2). With an

increase ofm @see Fig. 6~c!#, the regular structure of QE
functions disappears. This means that many of eigenst
are chaotic. However, the variancesq

2 remains limited, thus
demonstrating that in theq direction the eigenstates arelo-
calized. The fact that many points in Fig. 6~c! are distributed
incidentally, should be treated as the manifestation of qu
tum chaos.

FIG. 6. Relation betweenq̄ andsq for the QE functionsAq,s
Q in

the regionq50,61 for different coupling constants:~a!, ~b! m
5331025, ~c! m51024. Each point corresponds to a specific Q
function. Figure 6~b! shows the scaled-up fragment of the cent
part of Fig. 6~a!.
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Now we discuss numerical results for the dynamics of o
model. The evolution of any initial stateCq8,s8(0) can be
computed using the evolution matrixUq,s;q8,s8(NT),

Cq,s~NT!5 (
q8,s8

Uq,s;q8,s8~NT!Cq8,s8~0!. ~35!

We repeat again that our numerical data refer to the reg
when the values ofm and f 0 are small enough, so that mai
three resonances are not overlapped.

Quantum dynamics for different initial conditions
shown in Fig. 7. Here we show typical dependences of
variance of the energy(DH)25\0

2v2Dq in normalized units
versus timet measured in the numberN of periods of the
external perturbation. The quantityDq is defined similar to
that for the QE eigenstates,Dq5(q(q2q̄)2(suCq,su2, where
q̄5(qq(suCq,su2.

The data clearly show a different evolution character
three initial states taken from below and above the sep
trix, as well as from the separatrix layer. For the states ta
from the center of the resonance and well above the sep
trix, the variance(DH)2 quasiperiodically oscillates, in con
trast with the separatrix state. In the latter case, after a s
stochastization time the variance of the energy increases
early in time, thus manifesting a diffusionlike spread of t
wave packet.

More results are presented in Fig. 8, where a diffusionl
increase of the energy is shown for separatrix initial sta
and for different values ofm. One can see that linear in
crease of the varianceDq(N) is typical and occurs after a
short time, which is associated with the time of a fast spre
of packet over the separatrix layer in the transverse direct
Such a behavior is typical for the classical Arnol’d diffusio
The data allows one to determine the diffusion coefficient
D5(DH)2(N)/(NT), by making use the fit to a linear de
pendenceDq(N) for N.50.

We have calculated separately quantum and classical
fusion coefficients and found that the quantum Arnol’d d
fusion roughly corresponds to the classical one. Howe

l

FIG. 7. Normalized varianceDq of the energy versus the res
caled timeN for three different initial states~for m51.2531024

and f 051.2531026). Curves 1–3 correspond to an initial sta
near the center of the coupling resonance, above the separatrix
from the separatrix layer, respectively.
1-7
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DEMIKHOVSKII, IZRAILEV, AND MALYSHEV PHYSICAL REVIEW E 66, 036211 ~2002!
the data clearly indicate that the quantum diffusion is s
tematically weaker than the classical Arnol’d diffusion; s
Fig. 9.

One should stress that the quantum Arnol’d diffusi
takes places only in the case when the numberMs of energy
stationary states in the separatrix layer is relatively large.
the first time, this point was noted by Shuryak@15# who
studied the quantum-classical correspondence for nonli
resonances. In this connection we have to estimate the n
ber of the energy states that occupy the separatrix layer

However, it is a problem to make reliable analytical es
mates of the width of the separatrix layer for our model.
was shown in Ref.@20#, in the case of many-frequency pe
turbation, secondary resonances play a dominant role in
formation of chaos in a separatrix layer. Indeed, as w
shown above, the role of such resonances is quite stron
our case of the two-frequency perturbation. For this reas
we have performed a direct numerical calculation of
width of stochastic separatrix layer for the classical Ham
tonian, and used these results in order to estimate the num
of separatrix energy levels in the corresponding energy in
val.

We have found that form.1.2531024 the numberMs of
stationary states in the separatrix chaotic layer is more t
10; therefore, one can speak about a kind of stochastiza
in this region. On the other hand, with a decrease in
coupling~see data in Fig. 9 for 1/Am.100), the numberMs

FIG. 8. Time dependence of the variance of the energy for se
ratrix initial states and for different values of coupling parameterm:
~1! m51024, ~2! m51.2531024, ~3! m51.7531024, and ~4! m
52.2531024.

FIG. 9. Quantum~squares! and classical~solid line! diffusion
coefficients for different values ofm.
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decreases and form'331025 it is of the order of one. For
this reason the last right point in Fig. 9 corresponds to
situation when the classical chaotic motion along the c
pling resonance is completely suppressed by quantum eff
~the so-called ‘‘Shuryak border’’@15#!.

D. Dynamical localization

Since the diffusive motion along the coupling resonan
is effectively one-dimensional, one can naturally expec
Anderson-like localization. We have already noted that
variance of QE eigenstates of the evolution operator is fin
in theq space. This means that eigenstates are localized,
the wave packet dynamics in this direction has to reveal
saturation of the diffusion. More specifically, we expect th
the linear increase of the variance of the energy ceases
some characteristic time.

This effect, known as thedynamical localization, has
been discovered in Refs.@21,22# for the kicked rotor, and
was studied later in different physical models~see, for ex-
ample, Ref.@1# and references therein!. One should note tha
the dynamical localization is, in principle, different from th
Anderson localization, since the latter occurs for models w
random potentials. In contrast, the dynamical localizat
happens in dynamical~without any randomness! systems,
and is due to interplay between~week! classical diffusion
and ~strong! quantum effects.

In order to observe the dynamical localization in o
model ~along the coupling resonance inside the separa
layer!, one needs to study long-time dynamics of wave pa
ets. Our numerical study for large timesN'104 have re-
vealed that after some timet;t0'103T, the diffusionlike
evolution stops for all range of coupling parameterm. In-
stead, for larger times, the varianceDq starts to oscillate
around the mean valueD q̄. The period of such oscillations
depends onm nonmonotonically and varies from 103T to
104T. Two examples of such a long-time dynamics are giv
in Fig. 10.

One can argue that the localization length is of the or
of the width of wave packet after the saturation of the diff
sion @22#. Therefore, the localization lengthl s can be associ-
ated with the square root ofD q̄. We have numerically found

a-
FIG. 10. Dynamical localization of wave packets inside t

separatrix layer of the coupling resonance. The normalized varia
of the energy is shown for different values of the coupling para
eter: ~1! m51.531024, ~2! m52.2531024. Horizontal dashed

lines indicate the mean valueD q̄.
1-8
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QUANTUM ARNOL’D DIFFUSION IN A SIMPLE . . . PHYSICAL REVIEW E 66, 036211 ~2002!
the exponential dependenceD q̄ on 1/Am, see Fig. 11. This
result is not surprising because lnD is proportional to 1/Am
~see Fig. 9! and t0 is practically independent ofm.

It should be noted that the spread of packets ink and l
space occurs even without the coupling between two re
nances, due to the influence of the time-dependent pertu
tion ~see Sec. III A!. For this reason one should compare th
spread to that determined by the Arnol’d diffusion. Our a
ditional study clearly show that these two effects are v
different; see Fig. 12.

Here, we plotted the profileWq5(suCq,su2 of the wave
packet after the saturation versus the group numberq. This
figure demonstrates the main effect of the Arnol’d diffusi
along the coupling resonance. One can see that in all c
there is an exponential localization of packets in theq space.
This allows us to introduce the localization length defin
from the decrease of the probability in the tails of packe
The data illustrate a strong increase of the localization len
in the presence of the coupling between two oscillators
comparison with the case of completely independent osc
tors for m50 (q5k1 l and l 50).

IV. SUMMARY

We have studied the Hamiltonian system of two coup
nonlinear oscillators, one of which is under the influence
the time-dependent perturbation with two commensurate
quencies. In the classical description, the separatrix of
coupling resonance is destroyed due to the perturbation,
the Arnol’d diffusion occurs along this resonance inside
narrow stochastic layer. Our numerical data performed
the quantum analog of the system, allow us to make
following conclusions about the properties of the quant
Arnol’d diffusion.

By studying the quasienergy eigenstates of the evolu
operator, we have found an irregular structure of those eig
states that correspond to the stochastic layer. These e
states turned out to be exponentially localized along the c
pling resonance, with the localization length strong
enhanced in comparison with the case of noncoupled o
lators.

The study of wave packet dynamics for different initi
states has revealed a diffusionlike spread of packets a
the coupling resonance, if initial states correspond to the
chastic layer. We have found that the dependence of the

FIG. 11. The dependence ofD q̄ on 1/Am.
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fusion coefficient on model parameters roughly follows t
classical dependence. However, the quantum diffusion is
tematically slower than the classical one. This fact is ob
ously due to the influence of quantum effects.

It should be stressed that the quantum Arnol’d diffusi
occurs in a deep semiclassical region, specifically for
case when the numberMs of chaotic eigenstates inside th
stohastic layer is sufficiently large~of the order of 10 or
larger!. With a decrease of the coupling parameter, the dif
sion coefficient strongly decreases, and forMs<1 the diffu-
sion disappears. Therefore, we can see how strong quan
effects destroy the diffusive dynamics of the wave packe

Another manifestation of quantum effects is the dynam
cal localization that persists even for largeMs . Specifically,
we have observed that the quantum diffusion occurs only
finite ~although large! times. On a larger time scale the di
fusion ceases, and after some characteristic time it ter
nates. This effect is similar to that discovered in the kick
rotor model@21# and studied later in other physical system
~see, for example, Ref.@1# and references therein!. However,
in our case the dynamical localization arises for a we
chaos inside the separatrix layer, in contrast to previous m
els with a strong~global! chaos in the classical description

Our results may find confirmation in experiments on on
electron dynamics in two-dimensional semiconductor qu
tum billiards, where the charged particle motion is det
mined by the Hamiltonian of the types~17! and ~18!. It is
also possible that the quantum Arnol’d diffusion occurs
nuclear dynamics of complex molecules driven by la
fields @23#.
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